A class of solutions of the vacuum Einstein constraint equations with freely specified mean curvature
نویسنده
چکیده
We give a sufficient condition, with no restrictions on the mean curvature, under which the conformal method can be used to generate solutions of the vacuum Einstein constraint equations on compact manifolds. The condition requires a so-called global supersolution but does not require a global subsolution. As a consequence, we construct a class of solutions of the vacuum Einstein constraint equations with freely specified mean curvature, extending a recent result [HNT07] which constructed similar solutions in the presence of matter. We give a second proof of this result showing that vacuum solutions can be obtained as a limit of [HNT07] non-vacuum solutions. Our principal existence theorem is of independent interest in the near-CMC case, where it simplifies previously known hypotheses required for existence.
منابع مشابه
Near-constant Mean Curvature Solutions of the Einstein Constraint Equations with Non-negative Yamabe Metrics
We show that sets of conformal data on closed manifolds with the metric in the positive or zero Yamabe class, and with the gradient of the mean curvature function sufficiently small, are mapped to solutions of the vacuum Einstein constraint equations. This result extends previous work which required the conformal metric to be in the negative Yamabe class, and required the mean curvature functio...
متن کاملOn the topology of vacuum spacetimes
We prove that there are no restrictions on the spatial topology of asymptotically flat solutions of the vacuum Einstein equations in (n + 1)-dimensions. We do this by gluing a solution of the vacuum constraint equations on an arbitrary compact manifold Σn to an asymptotically Euclidean solution of the constraints on Rn. This is a special case of a more general gluing construction for nondegener...
متن کاملNon CMC Conformal Data Sets Which Do Not Produce Solutions of the Einstein Constraint Equations
The conformal formulation provides a method for constructing and parametrizing solutions of the Einstein constraint equations by mapping freely chosen sets of conformal data to solutions, provided a certain set of coupled, elliptic determined PDEs (whose expression depends on the chosen conformal data) admit a unique solution. For constant mean curvature (CMC) data, it is known in almost all ca...
متن کاملGluing and wormholes for the Einstein constraint equations
We establish a general gluing theorem for constant mean curvature solutions of the vacuum Einstein constraint equations. This allows one to take connected sums of solutions or to glue a handle (wormhole) onto any given solution. Away from this handle region, the initial data sets we produce can be made as close as desired to the original initial data sets. These constructions can be made either...
متن کاملFar-from-constant mean curvature solutions of Einstein's constraint equations with positive Yamabe metrics.
We establish new existence results for the Einstein constraint equations for mean extrinsic curvature arbitrarily far from constant. The results hold for rescaled background metric in the positive Yamabe class, with freely specifiable parts of the data sufficiently small, and with matter energy density not identically zero. Two technical advances make these results possible: A new topological f...
متن کامل